4,263 research outputs found

    Feedback Control of Human Stress with Music Modulation

    Get PDF
    Mental stress has known detrimental effects on human health, however few algorithmic methods of reducing mental stress have been widely explored. While the act of listening to music has been shown to have beneficial effects for stress reduction, and furthermore, audio players have been designed to selectively choose music and other inputs with the intent of stress reduction, limited work has been conducted for real-time stress reduction with feedback control using physiological input signals such as heart rate or Heart Rate Variability (HRV). This thesis proposes a feedback controller that uses HRV signals from wearable sensors to perform real-time (< 1 second) modulations to music through tempo changes with the goal to regulate and reduce stress levels. A standardized, stress inducing test based on the popular Stroop test is also introduced, which has been shown to induce acute stress in subjects and can be used as a testing benchmark for controller design. Ultimately, a controller is presented that when used is not only able to maintain stress levels during stress-inducing inputs to a human but even provides de-stressing effects beyond baseline performance.No embargoAcademic Major: Electrical and Computer Engineerin

    Anomalous Supercurrent from Majorana States in Topological Insulator Josephson Junctions

    Full text link
    We propose a Josephson junction setup based on a topological insulator (TI) thin film to detect Majorana states, which exploits the unique helical and extended nature of the TI surface state. When the magnetic flux through the junction is close to an integer number of flux quanta, Majorana states, present on both surfaces of the film, give rise to a narrow peak-dip structure in the current- phase relation by hybridizing at the edge of the junction. Moreover, the maximal Majorana-state contribution to Josephson current takes a (nearly) universal value, approximately equal to the supercurrent capacity of a single quantum-channel. These features provide a characteristic signature of Majorana states based entirely on supercurrent.Comment: 6 pages, 5 figure

    3-hydroxykynurenine suppresses CD4+ T-cell proliferation, induces T-regulatory-cell development, and prolongs corneal allograft survival

    Get PDF
    Copyright © 2011 Association for Research in Vision and Ophthalmology. This article is available open access through the publisher’s website at the link below.Purpose. IDO (indoleamine 2,3-dioxygenase) modulates the immune response by depletion of the essential amino acid tryptophan, and IDO overexpression has been shown to prolong corneal allograft survival. This study was conducted to examine the effect of kynurenines, the products of tryptophan breakdown and known to act directly on T lymphocytes, on corneal graft survival. Methods. The effects of kynurenines on T-cell proliferation and death, T-regulatory-cell development, and dendritic cell function, phenotype, and viability were analyzed in vitro. The effect of topical and systemic administration of 3-hydroxykynurenine (3HK) on orthotopic murine corneal allograft survival was examined. Results. T-lymphocyte proliferation was inhibited by two of the four different kynurenines: 3HK and 3-hydroxyanthranilic acid (3HAA). This effect was accompanied by significant T-cell death. Neither 3HK nor 3HAA altered dendritic cell function, nor did they induce apoptosis or pathogenicity to corneal endothelial cells. Administration of systemic and topical 3HK to mice receiving a fully mismatched corneal graft resulted in significant prolongation of graft survival (median survival of control grafts, 12 days; of treated, 19 and 15 days, respectively; P < 0.0003). While systemic administration of 3HK was associated with a significant depletion of CD4+ T, CD8+ T, and B lymphocytes in peripheral blood, no depletion was found after topical administration. Conclusions. The production of kynurenines, in particular 3HK and 3HAA, may be one mechanism (in addition to tryptophan depletion) by which IDO prolongs graft survival. These molecules have potential as specific agents for preventing allograft rejection in patients at high rejection risk.Fight for Sight and the Wellcome Trust

    Universal Chemomechanical Design Rules for Solid-Ion Conductors to Prevent Dendrite Formation in Lithium Metal Batteries

    Get PDF
    Dendrite formation during electrodeposition while charging lithium metal batteries compromises their safety. While high shear modulus solid-ion conductors (SICs) have been prioritized to resolve pressure-driven instabilities that lead to dendrite propagation and cell shorting, it is unclear whether these or alternatives are needed to guide uniform lithium electrodeposition, which is intrinsically density-driven. Here, we show that SICs can be designed within a universal chemomechanical paradigm to access either pressure-driven dendrite-blocking or density-driven dendrite-suppressing properties, but not both. This dichotomy reflects the competing influence of the SICs mechanical properties and partial molar volume of Li+ relative to those of the lithium anode on plating outcomes. Within this paradigm, we explore SICs in a previously unrecognized dendrite-suppressing regime that are concomitantly soft, as is typical of polymer electrolytes, but feature atypically low Li+ partial molar volume, more reminiscent of hard ceramics. Li plating mediated by these SICs is uniform, as revealed using synchrotron hard x-ray microtomography. As a result, cell cycle-life is extended, even when assembled with thin Li anodes and high-voltage NMC-622 cathodes, where 20 percent of the Li inventory is reversibly cycled

    Earth’s Subdecadal Angular Momentum Balance from Deformation and Rotation Data

    Get PDF
    Length-of-Day (LOD) measurements represent variations in the angular momentum of the solid Earth (crust and mantle). There is a known ~6-year LOD signal suspected to be due to core-mantle coupling. If it is, then the core flow associated with the 6-year LOD signal may also deform the mantle, causing a 6-year signal in the deformation of the Earth’s surface. Stacking of Global Positioning System (GPS) data is found to contain a ~6-year radial deformation signal. We inverted the deformation signal for the outer core’s flow and equivalent angular momentum changes, finding good agreement with the LOD signal in some cases. These results support the idea of subdecadal core-mantle coupling, but are not robust. Interpretation of the results must also take into account methodological limitations. Gravitational field changes resulting from solid Earth deformation were also computed and found to be smaller than the errors in the currently available data

    Minimum Violation Control Synthesis on Cyber-Physical Systems under Attacks

    Full text link
    Cyber-physical systems are conducting increasingly complex tasks, which are often modeled using formal languages such as temporal logic. The system's ability to perform the required tasks can be curtailed by malicious adversaries that mount intelligent attacks. At present, however, synthesis in the presence of such attacks has received limited research attention. In particular, the problem of synthesizing a controller when the required specifications cannot be satisfied completely due to adversarial attacks has not been studied. In this paper, we focus on the minimum violation control synthesis problem under linear temporal logic constraints of a stochastic finite state discrete-time system with the presence of an adversary. A minimum violation control strategy is one that satisfies the most important tasks defined by the user while violating the less important ones. We model the interaction between the controller and adversary using a concurrent Stackelberg game and present a nonlinear programming problem to formulate and solve for the optimal control policy. To reduce the computation effort, we develop a heuristic algorithm that solves the problem efficiently and demonstrate our proposed approach using a numerical case study

    NuSTAR Hard X-ray View of Low-luminosity Active Galactic Nuclei: High-energy Cutoff and Truncated Thin Disk

    Full text link
    We report the analysis of simultaneous XMM-Newton+NuSTAR observations of two low-luminosity Active Galactic Nuclei (LLAGN), NGC 3998 and NGC 4579. We do not detect any significant variability in either source over the ~3 day length of the NuSTAR observations. The broad-band 0.5-60 keV spectrum of NGC 3998 is best fit with a cutoff power-law, while the one for NGC 4579 is best fit with a combination of a hot thermal plasma model, a power-law, and a blend of Gaussians to fit an Fe complex observed between 6 and 7 keV. Our main spectral results are the following: (1) neither source shows any reflection hump with a 3σ3\sigma reflection fraction upper-limits R<0.3R<0.3 and R<0.18R<0.18 for NGC 3998 and NGC 4579, respectively; (2) the 6-7 keV line complex in NGC 4579 could either be fit with a narrow Fe K line at 6.4 keV and a moderately broad Fe XXV line, or 3 relatively narrow lines, which includes contribution from Fe XXVI; (3) NGC 4579 flux is 60% brighter than previously detected with XMM-Newton, accompanied by a hardening in the spectrum; (4) we measure a cutoff energy Ecut=107−18+27E_{\rm cut}=107_{-18}^{+27} keV in NGC 3998, which represents the lowest and best constrained high-energy cutoff ever measured for an LLAGN; (5) NGC 3998 spectrum is consistent with a Comptonization model with either a sphere (τ≈3±1\tau\approx3\pm1) or slab (τ≈1.2±0.6\tau\approx1.2\pm0.6) geometry, corresponding to plasma temperatures between 20 and 150 keV. We discuss these results in the context of hard X-ray emission from bright AGN, other LLAGN, and hot accretion flow models.Comment: 14 pages, 11 figures, 4 tables, accepted for publication in Ap

    Residential home heating: The potential for air source heat pump technologies as an alternative to solid and liquid fuels

    Get PDF
    AbstractInternational commitments on greenhouse gases, renewables and air quality warrant consideration of alternative residential heating technologies. The residential sector in Ireland accounts for approximately 25% of primary energy demand with roughly half of primary home heating fuelled by oil and 11% by solid fuels. Displacing oil and solid fuel usage with air source heat pump (ASHP) technology could offer household cost savings, reductions in emissions, and reduced health impacts. An economic analysis estimates that 60% of homes using oil, have the potential to deliver savings in the region of €600 per annum when considering both running and annualised capital costs. Scenario analysis estimates that a grant of €2400 could increase the potential market uptake of oil users by up to 17% points, whilst a higher oil price, similar to 2013, could further increase uptake from heating oil users by 24% points. Under a combined oil-price and grant scenario, CO2 emissions reduce by over 4 million tonnes per annum and residential PM2.5 and NOX emissions from oil and peat reduce close to zero. Corresponding health and environmental benefits are estimated in the region of €100m per annum. Sensitivity analyses are presented assessing the impact of alternate discount rates and technology performance. This research confirms the potential for ASHP technology and identifies and informs policy design considerations with regard to oil price trends, access to capital, targeting of grants, and addressing transactions costs
    • …
    corecore